Navigation überspringen

Vor 30+ Tagen

Master s Thesis: Pre-training Foundation Models for Remote Sensing

Master s Thesis: Pre-training Foundation Models for Remote Sensing

  • München
  • Vollzeit
  • 46.500 € – 59.500 € (von XING geschätzt)
Hybrid

Master s Thesis: Pre-training Foundation Models for Remote Sensing

Über diesen Job

Zurück zu Nachrichten-Bereich

Master's Thesis: Pre-training Foundation Models for Remote Sensing

21.03.2025, Studentische Hilfskräfte, Praktikantenstellen, Studienarbeiten

Master’s Thesis – Foundation Models for Remote Sensing (Hyperspectral Focus)

Overview

Foundation models have triggered a paradigm shift in computer vision, achieving strong generalization capabilities with little or no finetuning. These advances are largely driven by self-supervised learning algorithms, which enable the learning of useful representations on unlabeled data. These methods are now being applied to domain-specific problems in medical imaging, genomics, and remote sensing.

Remote sensing faces unique challenges, such as the diversity of sensors with varying spatial, spectral, and temporal characteristics. Common types of sensors include multispectral and hyperspectral sensors, synthetic aperture radar (SAR), and LiDAR, each providing distinct features.

Several efforts have focused on training foundation models for single sensor imagery and multi-sensor data. However, more efforts are needed to integrate more sensors and train truly general-purpose foundation models. For instance, the hyperspectral modality is often neglected due to the high cost of data acquisition, and large-scale pre-training of hyperspectral foundation models is still under-explored. Furthermore, the community lacks a systematic approach to evaluate these models, and the development of consistent and fair benchmarking practices is needed.

Thesis Objective

This thesis will investigate strategies for pre-training remote sensing foundation models, with a focus on the hyperspectral modality, and evaluation protocols to assess their performance under various scenarios.

Your Contribution

We seek a motivated Master's student to explore self-supervised learning techniques for remote sensing foundation models. The student will:

  • Work on the integration of hyperspectral data into large-scale pre-training frameworks
  • Contribute to the development of standardized evaluation methodologies
  • Possibly perform comparative analysis across multiple sensor types to understand benefits and limitations

Project Scope

  • Conduct a literature review on self-supervised learning and foundation models in remote sensing
  • Develop a new pre-training framework for hyperspectral data, incorporating best practices from computer vision and geospatial AI
  • Analyze and interpret results to assess the model’s performance, generalization capabilities, and limitations
  • Contribute to the establishment of standardized evaluation protocols for remote sensing foundation models

✅ Your Qualifications

  • Currently enrolled in a Master’s program in Geoscience, Earth Science, Remote Sensing, Computer Science, or a related field
  • Strong programming skills in Python, with experience in deep learning frameworks (e.g., PyTorch, TensorFlow)
  • Interdisciplinary expertise in at least two of the following areas: Geoscience, Remote Sensing, Machine Learning, Hyperspectral Imaging, Earth Observation
  • Familiarity with self-supervised learning and foundation models is a plus
  • Experience with geospatial software (e.g., QGIS, Google Earth Engine) is advantageous
  • Strong motivation to work independently and contribute to a collaborative research environment

We Offer

  • An opportunity to engage in cutting-edge research on remote sensing foundation models
  • The possibility to publish research findings in a scientific journal or present at a conference (subject to approval)
  • Access to computational resources and datasets for large-scale model training and evaluation

Impact

This thesis is an exciting opportunity to contribute to the development of next-generation AI-driven remote sensing technologies, with potential applications in environmental monitoring, climate resilience, and Earth observation analytics.

Kontakt: Nassim.AitAliBraham@dlr.de

Ähnliche Jobs

IDP HUSKY: Incremental Development of a Mobile Robot and Manipulator for SLAM and Manipulation

München

Technische Universität München

45.500 €61.000 €

Vor 30+ Tagen

Mathematiker Softwareentwicklung (m/w/d)

Gilching

Guldberg GmbH

46.500 €62.500 €

Vor 22 Tagen

Promotionsstelle (100%) - Mobility Data Scientist (m/w/d)

München

Technische Universität München

49.000 €63.500 €

Vor 24 Tagen

Applied Scientist, Learned Systems Group

München

Amazon

Vor 8 Stunden

Gehaltsprognose

55.000 €

46.500 €

59.500 €

Geschätztes Durchschnittsgehalt für vergleichbare Positionen

Geschätzte Gehaltsspanne für vergleichbare Positionen

Unternehmensdetails

company logo

Technische Universität München

Fach- und Hochschulen

5.001-10.000 Mitarbeitende

München, Deutschland

Bewertung von Mitarbeitenden

Vorteile für Mitarbeitende

Flexible Arbeitszeiten
Home-Office
Kantine
Restaurant-Tickets
Kinderbetreuung
Betriebliche Altersvorsorge
Barrierefreiheit
Gesundheitsmaßnahmen
Betriebsarzt
Training
Parkplatz
Günstige Anbindung
Vorteile für Mitarbeitende
Smartphone
Gewinnbeteiligung
Veranstaltungen
Privat das Internet nutzen
Hunde willkommen

Unternehmenskultur

Technische Universität München

Branchen-Durchschnitt

Unternehmenskultur

305 Mitarbeitende haben abgestimmt: Sie bewerten die Unternehmenskultur bei Technische Universität München als ausgeglichen zwischen traditionell und modern. Der Branchen-Durchschnitt tendiert übrigens in Richtung modern.

Mehr Infos anzeigen

Wir benachrichtigen Dich gerne über ähnliche Jobs in München:

Ähnliche Jobs

IDP HUSKY: Incremental Development of a Mobile Robot and Manipulator for SLAM and Manipulation

München

Technische Universität München

45.500 €61.000 €

Vor 30+ Tagen

Mathematiker Softwareentwicklung (m/w/d)

Gilching

Guldberg GmbH

46.500 €62.500 €

Vor 22 Tagen

Promotionsstelle (100%) - Mobility Data Scientist (m/w/d)

München

Technische Universität München

49.000 €63.500 €

Vor 24 Tagen

Applied Scientist, Learned Systems Group

München

Amazon

Vor 8 Stunden

Master thesis on Next-Gen Telecom Satellites with on-board 5G/6G gNodeB (NTN)

München

Airbus

35.500 €44.500 €

Vor 19 Tagen

Data Scientist for knowledge retrieval with AI (f/m/d)

München

TÜV SÜD AG

52.500 €80.000 €

Vor 28 Tagen

Postdoctoral Position for Pathology AI and Medical Machine Learning (m/f/d)

München

Technische Universität München

46.000 €67.000 €

Vor 27 Tagen

Algorithms and Methods in Data Science

München

Technische Universität München

49.000 €73.500 €

Vor 13 Tagen

Professorship Artificial Intelligence on Campus (m/f/d) in Berlin

Berlin

IU Internationale Hochschule GmbH

47.000 €62.000 €

Vor 9 Tagen

Master Thesis - Smart Energy Solutions: Optimize Power Systems with Machine Learning Techniques

Jülich

Forschungszentrum Jülich GmbH

33.000 €56.000 €

Vor 8 Tagen

Master Thesis: Machine Learning-Based Detection of Cognitive Load and Motion Sickness Using EEG (f/m/x)

Böblingen

Mercedes-Benz Tech Motion GmbH

47.500 €68.500 €

Vor 22 Tagen

Wissenschaftliche Mitarbeit in Quanteninformation und Machine Learning

Hannover

Leib­niz Uni­ver­si­tät Han­no­ver

47.000 €58.500 €

Vor 15 Tagen

Wissenschaftliche Hilfskraft im Bereich Softwareentwicklung, Data Science und Robotik

Frankfurt am Main

Fraunhofer-Institut für Materialfluss und Logistik IML

51.000 €74.000 €

Vor 2 Tagen