Navigation überspringen

Dr. Oleksandr Burlayenko

Angestellt, Leading Data Scientist, CERN
Bis 2024, Doktorand, Albert-Ludwigs-Universität Freiburg
Freiburg, Deutschland

Fähigkeiten und Kenntnisse

C/C++
Python
Data Analysis
Physics
Mathematics
Particle Physics
Computational Physics
Theoretical Physics
Analytical skills
Statistics
Data Science
Database
Data Structures
Machine Learning
E-Learning
Applied mathematics
Mathematical physics
Technology
High Energy Physics
Nuclear Energy / Nuclear Power
Nuclear Physics
ROOT
Research
Science
Teaching
Tutoring
Git
GitLab
GitHub
Jira
Artificial intelligence
Software Development
Quantum Field Theory
Mathematical Modeling
Linux
Windows
Microsoft Office
Latex
Informatics
Wolfram Mathematica
COMSOL Multiphysics
MatLab
Monte Carlo
Monte-Carlo Simulation
Monte-Carlo Generators
Natural Sciences
Computer Science
Elementary Particles Physics
ATLAS Experiment
Energy efficiency
machine Learning
Big Data Analyse
data interpretation
data visualization
statistical simulations
statistical analyses
Neural Network Model Tuning
Software Engineering
Process Optimization
Distributed Computing
Distributed Systems
Performance Optimization
Parallel programming
Cloud Computing
Cluster Management
Data Management
Grid computing
grid managment
Analytical thinking
Creative
Problem Solving
organization
Organizational skills
time ma
Time Management
self orga
Self-organization
adaptabili
Adaptability
fast adaptab
Fast adaptability
resilience
Stress resilience
ambitious
collaborative
Team work
Team leadership
Team player
Communication skills
feedback
International team management
respon
Responsible
Independant

Werdegang

Berufserfahrung von Oleksandr Burlayenko

  • Bis heute 4 Jahre und 5 Monate, seit Dez. 2020

    Wissenschaftlicher Mitarbeiter (Doktorand)

    Albert-Ludwigs-Universität Freiburg

    - Supervised courses for BSc/MSc students. - Led analyst in ttbar spin correlation and quantum entanglement research: developed analysis strategy, reduced measurement uncertainty by up to 92% (excl. per selection). - Developed and optimized production code for data sample simulations. - Managed big-data processing on the WLCG & NEMO clusters. - Neural network model tuning, improving sample purity by 32% and efficiency by 11%. - Implemented profile likelihood fits for parameters extraction.

  • Bis heute 4 Jahre und 5 Monate, seit Dez. 2020

    Leading Data Scientist

    CERN

    - Collaborated across Particle Modeling, Jet/ETmiss, and Top-Properties groups to enhance model accuracy. - Model code-development, production, and physics-validation of Monte Carlo (MC) samples for particle modeling. - Assessed the impact of various nuisance parameters on new MC samples. - Designed the intercalibration corrections in large-scale data analysis for improved precision modeling (paper in progress). - Regularly presented progress in CERN meetings and international conferences.

  • 7 Monate, Feb. 2019 - Aug. 2019

    Data Scientist, Research Trainee

    Theory Pole of IJCLab (Lab. de Physique des 2 Infinis Irène Joliot-Curie)

    High Energy Physics, Quantum Field Theory Theoretical Analysis: - Derived theoretical predictions to explore physics anomalies using the Effective Field Theory phenomenology framework. Simulation & Software: - Performed Monte Carlo statistical simulations, interpretation, and visualization with Python. - Analyzed LHC data for anomalous signals, exploring potential “new physics” effects using ROOT.

  • 3 Monate, Feb. 2019 - Apr. 2019

    data Scientist, Research Trainee

    Theory Pole of IJCLab (Lab. de Physique des 2 Infinis Irène Joliot-Curie)

    High Energy Physics, Quantum Field Theory Theoretical Analysis: - Derived theoretical predictions to explore physics anomalies using the Effective Field Theory phenomenology framework. Simulation & Software: - Performed Monte Carlo statistical simulations, interpretation, and visualization with Python. - Analyzed LHC data for anomalous signals, exploring potential “new physics” effects using ROOT.

  • 2 Monate, Aug. 2018 - Sep. 2018

    Research Trainee

    Nicolaus Copernicus University

    Quantum Foundations, Quantum Optics, Quantum Physics Theoretical Analysis [published in Nature]: - Analyzed spontaneous emission of quantum emitters in dispersive environments beyond the electric dipole approx. - Developed a generalized theory for multiple emitters coupled to a structured reservoir. - Investigated applications in fast addressing of atomic systems and decoherence-resistant quantum memories.

Ausbildung von Oleksandr Burlayenko

  • 4 Jahre, Dez. 2020 - Nov. 2024

    Doktorand

    Albert-Ludwigs-Universität Freiburg

    Experimental Particle Physics, Faculty of Mathematics & Physics, Physikalisches Institut (CERN, ATLAS Exp.) Thesis: Measurement of Top-Quark Pair Spin Correlation in the Lepton + Jets Channel using the ATLAS Experiment. Grade: Magna Cum Laude

  • 1 Jahr und 1 Monat, Aug. 2019 - Aug. 2020

    Faculty of Sciences (High Energy Physics)

    Université Paris-Sud

    Nuclei, Particles, Astroparticles and Cosmology (“NPAC”) Thesis: Window to Physics Beyond the Standard Model Through b to s Decay Modes.

  • 1 Jahr und 10 Monate, Sep. 2018 - Juni 2020

    Physics & Technology Faculty (High Energy Physics)

    V. N. Karazin Kharkiv National University

    Departmnet of Theoretical Nuclear Physics & Higher Mathematics named after A.I. Akhiezer; Thesis: Lepton Flavor Universality Violation in B to D* decays. Assessing the Theoretical Uncertainty in RD* ratios. Grade: 97.4/100, 1st in Faculty, Diploma with Honors.

  • 3 Jahre und 10 Monate, Sep. 2014 - Juni 2018

    Physics & Technology Faculty (Theoretical Nuclear Physics)

    V. N. Karazin Kharkiv National University

    Department of Theoretical Nuclear Physics & Higher Mathematics named after A.I. Akhiezer Thesis: Doppler Effect and the Stability of the NBW Mode in the Advanced Fast Reactors. Grade: 95/100, 1st in Faculty, Diploma with Honors.

Sprachen

  • Englisch

    Fließend

  • Russisch

    Muttersprache

  • Ukrainian

    Muttersprache

  • Bulgarian

    Fließend

  • Deutsch

    Gut

XING – Das Jobs-Netzwerk

  • Über eine Million Jobs

    Entdecke mit XING genau den Job, der wirklich zu Dir passt.

  • Persönliche Job-Angebote

    Lass Dich finden von Arbeitgebern und über 20.000 Recruiter·innen.

  • 22 Mio. Mitglieder

    Knüpf neue Kontakte und erhalte Impulse für ein besseres Job-Leben.

  • Kostenlos profitieren

    Schon als Basis-Mitglied kannst Du Deine Job-Suche deutlich optimieren.

21 Mio. XING Mitglieder, von A bis Z